Note on Dedekind Type Dc Sums
نویسنده
چکیده
In this paper we study the Euler polynomials and functions and derive some interesting formulae related to the Euler polynomials and functions. From those formulae we consider Dedekind type DC(Daehee-Changhee)sums and prove reciprocity laws related to DC sums.
منابع مشابه
Special Functions Related to Dedekind Type Dc-sums and Their Applications
In this paper we construct trigonometric functions of the sum Tp(h, k), which is called Dedekind type DC-(Dahee and Changhee) sums. We establish analytic properties of this sum. We find trigonometric representations of this sum. We prove reciprocity theorem of this sums. Furthermore, we obtain relations between the Clausen functions, Polylogarithm function, Hurwitz zeta function, generalized La...
متن کاملA hybrid mean value involving a new Gauss sums and Dedekind sums
In this paper, we introduce a new sum analogous to Gauss sum, then we use the properties of the classical Gauss sums and analytic method to study the hybrid mean value problem involving this new sums and Dedekind sums, and give an interesting identity for it.
متن کاملTwisted Dedekind Type Sums Associated with Barnes’ Type Multiple Frobenius-Euler l-Functions
The aim of this paper is to construct new Dedekind type sums. We construct generating functions of Barnes’ type multiple FrobeniusEuler numbers and polynomials. By applying Mellin transformation to these functions, we define Barnes’ type multiple l-functions, which interpolate Frobenius-Euler numbers at negative integers. By using generalizations of the Frobenius-Euler functions, we define gene...
متن کاملDedekind sums : a combinatorial - geometric viewpoint Matthias Beck and Sinai Robins
The literature on Dedekind sums is vast. In this expository paper we show that there is a common thread to many generalizations of Dedekind sums, namely through the study of lattice point enumeration of rational poly-topes. In particular, there are some natural finite Fourier series which we call Fourier-Dedekind sums, and which form the building blocks of the number of partitions of an integer...
متن کاملThe Elliptic Apostol-dedekind Sums Generate Odd Dedekind Symbols with Laurent Polynomial Reciprocity Laws
Abstract. Dedekind symbols are generalizations of the classical Dedekind sums (symbols). There is a natural isomorphism between the space of Dedekind symbols with Laurent polynomial reciprocity laws and the space of modular forms. We will define a new elliptic analogue of the Apostol-Dedekind sums. Then we will show that the newly defined sums generate all odd Dedekind symbols with Laurent poly...
متن کامل